

Abstracts

Pseudomorphic HEMT Manufacturing Technology for Multifunctional Ka-Band MMIC Applications

C.S. Wu, C.K. Pao, W. Yau, H. Kanber, M. Hu, S.X. Bar, A. Kurdoghlian, Z. Bardai, D. Bosch, C. Seashore and M. Gawronski. "Pseudomorphic HEMT Manufacturing Technology for Multifunctional Ka-Band MMIC Applications." 1995 Transactions on Microwave Theory and Techniques 43.2 (Feb. 1995 [T-MTT]): 257-266.

We have demonstrated very good performance, high yield Ka-Band multifunctional MMIC results using our recently developed 0.25- μ m gate length pseudomorphic HEMT (PHEMT) manufacturing technology. Four types of MMIC transceiver components--low noise amplifiers, power amplifiers, mixers, and voltage controlled oscillators--were processed on the same PHEMT wafer, and all were fabricated using a common gate recess process. High performance and high producibility for all four MMIC components was achieved through the optimization of the device epitaxial structure, a process with wide margins for critical process steps and circuit designs that allow for anticipated process variations, resulting in significant performance margins. We obtained excellent results for the Ka-band power amplifier: greater than 26 dBm output power at center frequency with 4.0% standard deviation over the 3-in. wafer, 2-GHz bandwidth, greater than 20 percent power-added efficiency, over 8 dB associated gain, and over 10 dB linear gain. The best performance for the Ka-band LNA was over 17 dB gain and 3.5 dB noise figure at Ka-band. In this paper, we report our device, process, and circuit approach to achieve the state-of-the-art performance and producibility of our MMIC chips.

[Return to main document.](#)

Click on title for a complete paper.